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1 Code description

SPARK-LES is a Large-Eddy Simulation (LES) code currently under develop-
ment at CIRA in the framework of the HYPROB Program, funded by the Italian
Ministry of Research [I]. In a timeframe of four years, the code shall be able
to 1) provide an advanced analysis tool for design purposes, and 2) reproduce
the main physical phenomena occurring within a liquid-rocket thrust chamber
(e.g., turbulent mixing, high-pressure combustion, acoustic instabilities) with
high-fidelity numerical methods and state-of-the-art modelling. An overview of
the current status is reported in [2].

SPARK-LES solves the fully compressible Navier-Stokes equations discretized
on multi-block, structured grids according to the Finite-Volume (FV) method.
Explicit second- and fourth-order as well as compact fourth- and sixth-order
cartesian-like operators are available for reconstruction of convective and diffu-
sive fluxes [3]. The general interpolation operator can be expressed, for a generic
variable ¢, as
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where ¢ and ¢ are the face- and cell-averaged values of ¢, respectively. Two
methods are available to solve the tridiagonal system arising from Eq. when
a # 0: an analytic procedure valid for periodic and uniform cases (i.e., symmet-
ric circulant systems) [4], or a Thomas algorithm, which is generally applicable.
A fully-integrated metrics approach is adopted to take into account non-uniform
meshes: the coefficients of Eq. are properly modified to retain the order of
accuracy on stretched grids. Time-advancement is obtained by means of explicit
Runge-Kutta schemes of arbitrary number of stages. SPARK-LES features an
MPI parallel implementation based on multi-block partitioning of the computa-
tional domain. The MPI calls have been carefully profiled in order to minimize
communication overhead. The code makes full use of Fortran 90 capabilities,



in terms of dynamic allocation, highly modular architecture and massive use of
pointers for CPU efficiency and memory usage optimization.

2 Case summary

The Taylor-Green Vortex problem is defined on a triperiodic cube with sides of
27, and the following initial conditions

u(z,y, z) = Upsin(z/L) cos(y/L) cos(z/L), (2a)
v(x,y,z) = —Ugcos(x/L)sin(y/L) cos(z/L), (2b)
w(x,y,z) =0, (2¢)
p(z,y,2) =po+ p0116J§ [cos(2x/L) + cos(2y/L)] [cos(2z/L) + 2] . (2d)

As time advances, the initial distribution of vorticity is subject to vortex-
stretching, thus generating small scales and eventually causing the vortices to
break into turbulence. Since there is no forcing to sustain the turbulent motion,
a decay is observed after transition. The incompressible problem is entirely gov-
erned by the Reynolds number Re = 2%L equal to 1600. However, since the
code solves the compressible flow equations, the other dimensional parameters
have been set to yield a nearly incompressible condition, i.e. M = 0.1. The ideal
gas equation of state is used, along with a constant Prandtl number Pr = 0.71.
The domain has been discretized by a uniform mesh of increasing resolution,
643, 1283 and 256 cells. The meshes are regular cartesian grids and have been
generated by an in-house tool. In this study, explicit and compact fourth-order
schemes are used for both convective and diffusive fluxes. For convective fluxes,
the coefficients of Eq. are y1 = 7/12 and 75 = —1/12 for the explicit fourt-
order scheme (« = 0, L = 2) and ; = 3/4 for the fourth-order compact scheme
(a = 3/4, L = 1). For diffusive fluxes, a formula similar to Eq. is adopted,
involving face-averaged gradients rather than interpolated values. For this case,
the tridiagonal system is solved by the analytic procedure. Time-advancement
is performed using a third-order Runge-Kutta scheme with CFL = 0.6. No ar-
tificial dissipation or filters of any type are used. The computations were run
on the CIRA cluster FLAME, equipped with Intel Xeon E5-2680 @2.7 GHz
processors. Results from TauBench runs gave an average time of 7.344s.

3 Results

Figure |1| shows the time-evolution of the global kinetic energy dissipation rate
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for the explicit (left) and compact (right) fourth-order schemes and for three
grid resolutions. The time t* is adimensionalized by means of L and Uy. A




Table 1: TauBench-normalized costs to integrate until t* = 12.

N Time step [s] Iterations Total Work Units

64 5.4-107° 6400 1130
128 2.7-107° 12800 18150
256 1.35-107° 25600 292280

good grid convergence is observed in both cases. The finest grid is in excel-
lent agreement with the reference solution for both schemes. The coarse grid
shows an oscillatory behavior probably due to inadequate resolution as the flow
undergoes creation of smaller scales. The integrated enstrophy
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is also considered: this is as an indirect measure of the dissipation rate, through
the relation e, = 2%(. The time-evolution of € is shown in Fig. 2| For
the finest resolution, good agreement is observed also for the enstrophy-based
dissipation rate, hence no significant spurious dissipation is added to the solution
and turbulent scales are well resolved by the numerical scheme.

Contours of the vorticity norm on a subset of the plane x = —7L at t* = 8
are shown in Figure [3} While the lowest grid resolution captures only the con-
centration of vorticity, the main structures of the shear layer are described
increasingly well as the mesh is refined. The result on 2563 cells shows a sat-
isfactory agreement with the reference solution [5]. Although the presence of
spurious secondary structures is still observed, the vorticity contours are well
defined for both schemes, showing adequate resolution.

The code took an average of 5 - 1075 seconds per iteration and per cell. It
is worth to remark that the two schemes (explicit and compact) take roughly
the same computational effort. Numerical tests show that this is true for both
the procedures available to solve the tridiagonal system. The details of the
simulation times are reported in Table
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Figure 1: Kinetic energy dissipation rate as a function of the non-dimensional
time ¢* for fourth-order explicit (left) and compact (right) schemes.
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Figure 2: Enstrophy-based dissipation rate as a function of the non-dimensional
time t* for fourth-order explicit (left) and compact (right) schemes.
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Figure 3: Contour of dimensionless vorticity norm ULOHwH =1,5,10,20,30 in a
subset of the periodic face ¥ = —m at time t* = 8 on the three grids. Comparison
between reference results in [5] (black) and SPARK-LES results (red) for fourth-
order explicit (left) and compact (right) schemes.
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